
Testing and validation approaches for
scientific software

Juan Luis Cano - 2018-09-25 OSCW '18 @ ESAC,
Madrid

Duration

12 minutes of talk + 8 minutes of Q&A

Description

https://2018.oscw.space/event/1/contributions/13/ (https://2018.oscw.space

/event/1/contributions/13/)

Nowadays, even though software has a fundamental role in scientific

research, the wide majority of scientists is primarily self-taught and received

no formal training in software engineering, with often leads to quality and

reproducibility problems[1]. The space industry is in a similar situation, with

many incident reports describing “various aspects of complacency and a

discounting or misunderstanding of the risks associated with software”[2][3].

One of the most useful engineering techniques, software testing, is also the

one that presents the biggest gap between its perceived importance and the

skill level of scientists in it[4]. Testing, as well as other good practices such

as version control and code reviews, not only make code more reusable but

also increase the productivity of the developer[5]. However, the special

nature of scientific or algorithmic software makes it difficult to apply

commonplace testing practices, since the challenges lie in “separating

software bugs from model errors and approximation error”[4].

In this talk we will discuss some testing approaches (or lack thereof) present

in scientific software that fall short in helping the developers find errors or

increase their productivity, and propose some other strategies based on our

experience with poliastro, an open source Python library for

Astrodynamics[6]. These strategies make use of automated testing

frameworks, help covering test cases in an exhaustive way

(hypotheses), take advantage of analytical solutions of the problems at

hand or public data when available, and guarantee self consistency

(regression testing) when there is nothing to compare against. Finally, we will

analyze the limitations of these approaches and discuss possible solutions.

[1]: Wilson, Greg, Dhavide A. Aruliah, C. Titus Brown, Neil P. Chue

Hong, Matt Davis, Richard T. Guy, Steven HD Haddock et al. "Best

practices for scientific computing." PLoS biology 12, no. 1 (2014):

e1001745.

[2]: Leveson, Nancy G. "Role of software in spacecraft accidents."

Journal of spacecraft and Rockets 41, no. 4 (2004): 564-575.

I am more like a software person, so I would like to start with a couple of

questions:

Who writes code as part of their day job?

And who would like to find a method to write code with no errors or

mistakes whatsoever??

Don't write any single line of code
ever again.

Questions?

Overview
Introduction and motivation1.

The concept of testing and typical mistakes2.

What to validate against?3.

Python testing frameworks4.

Conclusions5.

And, by the way, this talk is online! https://github.com/poliastro/oscw2018-

talk (https://github.com/poliastro/oscw2018-talk) (go, start it ⥜⥝)

A not so long time ago...

https://www.wired.com/2010/11/1110mars-climate-observer-report/

(https://www.wired.com/2010/11/1110mars-climate-observer-report/)

Only a few years ago...

http://www.esa.int/Our_Activities/Space_Science/ExoMars

/Schiaparelli_landing_investigation_completed (http://www.esa.int

/Our_Activities/Space_Science/ExoMars

/Schiaparelli_landing_investigation_completed)

Recommendation 05 – Robust and reliable sanity checks shall

be implemented in the on-board S/W to increase the

robustness of the design, which could be, but not limited to :

Check on attitude

Check on altitude sign (altitude cannot be negative).

Check on vertical acceleration during terminal descent and

landing (cannot be higher than gravity).

Check altitude magnitude change (it cannot change from

3.7 Km to a negative value in one second)

(emphasis mine)

Testing

Software testing is an investigation conducted to provide

stakeholders with information about the quality of the software

product or service under test.

—https://en.wikipedia.org/wiki/Software_testing

(https://en.wikipedia.org/wiki/Software_testing)

Assumption #0: You have some tests

Examples:

End-to-end (E2E) simulation that compares the result of today and

yesterday

A checklist that must be followed before important milestones

An Excel spreadsheet where a person marks whether some functionality

is present or not

Typical mistake #1: Not having automated
tests

If you use software that lacks automated tests, you are the

tests.

— Jenny Bryan (@JennyBryan) September 22, 2018

(https://twitter.com/JennyBryan/status

/1043307291909316609?ref_src=twsrc%5Etfw)

People fail while running the tests

Confronting a coworker work can be tough

People tend to oversee certain issues on Friday afternoons

Typical mistake #2: Not having unit tests

Software is made up of small pieces (right???) so we should test them

individually (i.e. and E2E simulation is not a enough)

If a small piece of software is not testable, it's almost certainly a sign of

bad design

Code that has side effects (writes to disk, trigger the fire alarm) is

inherently difficult to test, so they should be isolated as much as

possible

Keyword: refactoring, learn it!

Typical mistake #3: Shooting yourself in the
foot

i.e. writing a passing test that is, in fact, hiding a problem.

Example task: "Write the sinc function"

$$ \operatorname{sinc}(x) = \frac{\sin{x}}{x} $$

In [1]: import numpy as np

def sinc(x):

return np.sin(x) / x

In [2]: import pytest

def test_sinc():

assert sinc(1.0) == np.sin(1.0) / 1.0

In [4]: # https://jakevdp.github.io/blog/2017/12/05/installing-python-packages

-from-jupyter/

import sys

!{sys.executable} -m pytest test_sinc1.py

Potential mistakes:

Copy-paste: it's very tempting to copy the function to the test, isn't it?

Looks like a great way to copy-paste typos and mistakes as well!

Corner cases (see next point)

Bogus floating point comparisons!

In [5]: 0.1 + 0.2 == 0.3

In [6]: 0.2 + 0.3 == 0.5

============================= test session starts ===============

===============

platform linux -- Python 3.7.0, pytest-3.8.0, py-1.5.4, pluggy-0.

7.1

hypothesis profile 'default' -> database=DirectoryBasedExampleDat

abase('/home/juanlu/Development/poliastro/talks/oscw2018/.hypothe

sis/examples')

rootdir: /home/juanlu/Development/poliastro/talks/oscw2018, inifi

le:

plugins: cov-2.5.1, hypothesis-3.73.0

collected 1 item

test_sinc1.py .

[100%]

=========================== 1 passed in 0.09 seconds ============

===============

Out[5]: False

Out[6]: True

Typical mistake #4: Not covering corner
cases

In [7]: import pytest

https://docs.pytest.org/en/stable/parametrize.html

@pytest.mark.parametrize("x", [-2, 1, 1, 2])

def test_sinc(x):

assert sinc(x) == np.sin(x) / x

In [9]: !{sys.executable} -m pytest test_sinc2.py

============================= test session starts ===============

===============

platform linux -- Python 3.7.0, pytest-3.8.0, py-1.5.4, pluggy-0.

7.1

hypothesis profile 'default' -> database=DirectoryBasedExampleDat

abase('/home/juanlu/Development/poliastro/talks/oscw2018/.hypothe

sis/examples')

rootdir: /home/juanlu/Development/poliastro/talks/oscw2018, inifi

le:

plugins: cov-2.5.1, hypothesis-3.73.0

collected 4 items

test_sinc2.py

[100%]

=========================== 4 passed in 0.09 seconds ============

===============

In [10]: sinc(0) == np.sin(0) / 0

In [11]: from hypothesis import given

import hypothesis.strategies as st

@given(st.floats())

def test_sinc(x):

assert sinc(x) == np.sin(x) / x

In [14]: def sinc(x):

return np.sin(x) / x if x != 0.0 else 1.0

In [15]: @given(st.floats())

def test_sinc(x):

assert sinc(x) == np.sin(x) / x # And now what?

We need validation data!

/home/juanlu/.miniconda36/envs/poliastro37/lib/python3.7/site-pac

kages/ipykernel_launcher.py:4: RuntimeWarning: invalid value enco

untered in double_scalars

 after removing the cwd from sys.path.

/home/juanlu/.miniconda36/envs/poliastro37/lib/python3.7/site-pac

kages/ipykernel_launcher.py:1: RuntimeWarning: invalid value enco

untered in double_scalars

 """Entry point for launching an IPython kernel.

Out[10]: False

What to validate against?
A better way:

Compare against some authoritative source: external data or software

Do floating point comparisons right and use tolerances

In [16]: def test_convert_from_rv_to_coe():

Data from Vallado, example 2.6

attractor = Earth

p = 11067.790 * u.km

ecc = 0.83285 * u.one

inc = 87.87 * u.deg

raan = 227.89 * u.deg

argp = 53.38 * u.deg

nu = 92.335 * u.deg

expected_r = [6525.344, 6861.535, 6449.125] * u.km

expected_v = [4.902276, 5.533124, -1.975709] * u.km / u.s

r, v = ClassicalState(attractor, p, ecc, inc, raan, argp, nu).rv()

assert_quantity_allclose(r, expected_r, rtol=1e-5)

assert_quantity_allclose(v, expected_v, rtol=1e-5)

What's the perfect way?

How much precision do you ask for? Should you carry a mathematical

analysis?

What if your results don't match? Sometimes, book or paper authors

respond to your comments... And sometimes don't

The changes in precision are a result of bad data, or worse algorithms?

How do you even track improvements?

External data (short summary)

Nobody cares

Those who care, don't share it

Those who share, do it with 1 decimal place (true story)

Those who share with 16 decimal places, don't describe how it was

obtained (i.e. release the source)

Those who release the source, make it impossible to compile

External software

Sometimes commercial

It is often difficult to reproduce the exact setting and algorithms, most of

the times because your commercial software is much more complex

...but is it validated itself?

https://www.ams.org/notices/201410/rnoti-p1249.pdf (https://www.ams.org

/notices/201410/rnoti-p1249.pdf)

Conclusions
Writing good, comprehensive tests is not trivial

But we need to!

There are tools at hand that help

Automate everything

Validate what you use, it might bite you

Per Python ad astra! ᧮᧯᧰᧱᧲᧳᧴᧵

Astrodynamics in Python

Slides: https://github.com/poliastro/oscw2018-talk (https://github.com

/poliastro/oscw2018-talk)

poliastro chat: https://riot.im/app/#/room/#poliastro:matrix.org

(https://riot.im/app/#/room/#poliastro:matrix.org)

Twitter: https://twitter.com/poliastro_py (https://twitter.com/poliastro_py)

