TU Darmstadt Space Technology Development of a CubeSat communications system based on CCSDS and ECSS standards Open Source CubeSat Workshop 2018 Madrid 25.09.2018 Milenko Starcik TU Darmstadt Space Technology e. V. ### **Our Mission** ### **Our CubeSat** ### Global **Blue:** Recommended Standards **Red:** Draft Recommended Standard Magenta: Recommended Practices **Green:** Informational Reports | OSI Layers | CCSDS Standards | |-----------------------|---| | 7 Application | Mission Operation (MO) Services | | 6 Presentation | Message Abstraction Layer (MAL) | | 5 Session | Message Abstraction Layer Space Packets Binding | | 4 Transport | Space Packets | | 3 Network | | | | Unified Space Data Link | | 2 Data Link | Telemetry Synchronisation and Channel Coding | | | Telecommand Synchronisation and Channel Coding | | 1 Physical | Radio Frequency and Modulation System | ### **CCSDS and ECSS standards** # User friendly? | OSI Layers | CCSDS Standards | Pages | |-----------------------|---|--------------| | 7 Application | Mission Operation (MO) Services | 65+62+71+290 | | 6 Presentation | Message Abstraction Layer (MAL) | 178 | | 5 Session | Message Abstraction Layer Space Packets Binding | 72 | | 4 Transport | Space Packets | 49 | | 3 Network | | | | | Unified Space Data Link | 168 | | 2 Data Link | Telemetry Synchronisation and Channel Coding | 92 | | | Telecommand Synchronisation and Channel Coding | 43 | | 1 Physical | Radio Frequency and Modulation System | 280 | | ' | | = 1370 | ### Cooperation ### **Pros and Cons** ### Pro: - Everything for free - Robust - Cooperation - Reusability ### Contra: - Difficult to understand - Overhead - Unused functionality ### "CCSDS frame exchange over Radio Link in GNURadio" ## **Documentation** **Version Control** ## **Problems** **Installation** Bugs hackRF-one ### **Keep it simple** ## Solutions ### **Telemetry** - Error-control coding - Reed-Solomon coding - Frame validation - Synchronization - Pseudo-randomizing ``` TransferFrame.pv Proiect class TransferFrame: USLP > iii __pycache__ A Transfer Frame is used to carry the data in the Unified Space Data Link Protocol. > documentation init .py TransferFrame.pv transfer frame primary header, transfer frame insert zone. TransferFrameDataField.py transfer frame data field, TransferFrameDataFieldHeader.pv TransferFramePrimaryHeader.py frame error control field): TruncatedTransferFrame.pv TruncatedTransferFramePrimaryHeader.py atils.pv :param transfer frame primary header: Contains information about the Frame :type transfer frame primary header: TransferFramePrimaryHeader :param transfer frame insert zone: Is used by the Insert Service :type transfer frame insert zone: :param transfer frame data field: Contains the data of the Frame :type transfer frame data field: TransferFrameDataField :param operational control field: Provides a mechanism to report some real-time functions :type operational control field: :param frame error control field: Provides the capability to detect errors :type frame error control field: self.transfer frame primary header = transfer frame primary header self.transfer frame insert zone = transfer frame insert zone self.transfer frame data field = transfer frame data field self.operational control field = operational control field self.frame error control field = frame error control field ``` Welcome to Unified Space Data Link Protocol's documentation! ## Welcome to Unified Space Data Link Protocol's documentation! ### **Transfer Frame** class TransferFrame.TransferFrame(transfer_frame_primary_header, transfer_frame_insert_zone, transfer_frame_data_field, operational_control_field, frame_error_control_field) A Transfer Frame is used to carry the data in the Unified Space Data Link Protocol. __init__(transfer_frame_primary_header, transfer_frame_insert_zone, transfer_frame_data_field, operational_control_field, frame_error_control_field) #### Parameters: - transfer_frame_primary_header (TransferFramePrimaryHeader) Contains information about the Frame - transfer frame insert zone Is used by the Insert Service - transfer_frame_data_field (TransferFrameDataField) Contains the data of the Frame - operational_control_field Provides a mechanism to report some real-time functions - frame_error_control_field Provides the capability to detect errors ### **Transfer Frame Data Field** ${\it class} \ \ {\tt TransferFrameDataField.TransferFrameDataField} (transfer_frame_data_field_header, transfer_frame_data_zone)$ The Transfer Frame Data Field contains the data that should be delivered by the frame. __init__(transfer_frame_data_field_header, transfer_frame_data_zone) #### Parameters: - transfer_frame_data_field_header (TransferFrameDataFieldHeader) Contains information about the Transfer Frame Data Field - transfer_frame_data_zone (str) Contains the real data ### Transfer Frame Data Field Header | OSI Layers | CCSDS Standards | |-----------------------|---| | 7 Application | Mission Operation (MO) Services | | 6 Presentation | Message Abstraction Layer (MAL) | | 5 Session | Message Abstraction Layer Space Packets Binding | | 4 Transport | Space Packets | | 3 Network | | | 2 Data Link | Unified Space Data Link | | | Telemetry Synchronisation and Channel Coding | | | Telecommand Synchronisation and Channel Coding | | 1 Physical | Radio Frequency and Modulation System |