

What is PLUTO?
PLUTO stands for “Procedure language for users in test and operations” and is an open and free standard
published by the European Committee for Space Standardization (ECSS, https://ecss.nl/). It defines a domain
specific language for testing and operation. It was developed for use in the space domain, but can be applied to
any domain where the control of machines or instruments is needed.

PLUTO to Python Parser
Artur Scholz (artur.scholz@librecube.org), Christoph Buchner (christoph.buchner@gmail.com), Vidit Jain (viditjain5598@gmail.com)

Why use PLUTO?
PLUTO is a domain specific language (DSL), which
means that it is specialised to a particular domain of
interest. This is in contrast to a general purpose
language like Python, which is generic and can be used
for any kind of problems. The advantage of a DSL is
that operators do not need to learn the (many) specifics
of a programming language, but only the rules of the
DSL. Also, PLUTO is tested and was designed by
experts for use in space applications. Moreover, the
syntax of PLUTO is human readable and can be parsed
by computer as well. That makes it particular useful for
automation.
You may want to use PLUTO to write automated test
scripts and for flight operations.

Why this Parser?
PLUTO is currently used by a few missions of ESA and
DLR, among others, mostly in the context of automated
operations. Unfortunately, the existing PLUTO
procedure parsers and executors are neither open
source, nor available to third party users. Therefore we
launched the development of this parser to demonstrate
the capabilities of PLUTO language, and to make it
easily and freely accessible to anyone. Most of the
development was done in the frame of a Google
Summer of Code project in summer 2019.

How to use it?
Download/clone the repository and install it. You can
then use the commands pluto_convert to parse a
PLUTO script into a Python script (see example on the
right). The generated Python code shall then be run by
an executor. An example of such is contained in the
command pluto_run, but you are free to produce your
own executor and/or automation system on top of it.

To interact with the system (that is, your CubeSat, your
test machine, etc.) you will need to create a system
model of it first. This model acts as sink for activity calls
and as source for reporting data, both of which are
referenced to in the PLUTO scripts.

procedure
preconditions

wait until value of GyroTemp > 60 degC
end preconditions
main

initiate and confirm SwitchOnGyroConverter;
initiate and confirm SwitchOnGyro5;
initiate and confirm Gyro5FineMode;

end main
confirmation

wait until value of Gyro5 < 0.2 deg/h
end confirmation

end procedure

Fig 1: The general structure of a procedure
 (from ECSS-E-ST-70-32C)

Fig 2: Example of PLUTO script (as input)

Fig 3: Example of generated Python code
from pluto import *
from model import *

class Procedure_test0921(Procedure):

 def preconditions(self):
 if self.wait_until_expression(
 lambda: GyroTemp.get_value() > ureg('60degC')) is False:
 return False

 def main(self):
 act = ActivityCall(self, SwitchOnGyroConverter)
 if self.initiate_and_confirm_activity(act) is False: return False
 act = ActivityCall(self, SwitchOnGyro5)
 if self.initiate_and_confirm_activity(act) is False: return False
 act = ActivityCall(self, Gyro5FineMode)
 if self.initiate_and_confirm_activity(act) is False: return False

 def confirmation(self):
 if self.wait_until_expression(
 lambda: Gyro5.get_value() < ureg('0.2deg')/h) is False:
 return False

Further information
The project is still in prototype phase. You can find it at the
link below. Please contact the authors for more information
or if you would like to contribute.

https://gitlab.com/librecube/prototypes/python-pluto

