

Dynamic Open-source Satlink Analyzer (DOSA)

Priyanka NINGARAJU

Guillaume ROUX

Thibault GATEAU

Presented on 14/10/2019

Centre Spatial Universitaire de Toulouse Space innovation, together

Contents

- What is a Link Budget?
- Static Vs Dynamic Link Budget
- State of the Art
- DOSA
 - Free Space Loss
 - Pointing Loss
 - Doppler Effect
- Case Study EyeSat
- Future Work
- Bibliography

What is a Link Budget?

More Received Power*
More Received Data

*Carrier Signal to Noise Power Spectral Density Ratio

Signal Gain Loss Profile

Centre Spatial Universitaire de Toulouse Space Innovation, together

Range and Elevation Angle

Static Vs Dynamic Link Budget

Dynamic link budget calculates as a function of time over entire pass

State of the Art

- High dependency on restricted software or database for orbit propagation
- Tools are NOT open source

- Useful but calculates only Static Link Budget
- Can be complex to use

Repository:

https://sourceforge.isae.fr/projects/dosa_link_budget_analysis

- Calculates dynamic link budget
- Enables to select best passes
- Visualisation of available margins

OEM and AEM Files in CCSDS format

Orbit Ephemeris Message (OEM) – "An OEM specifies the **position** and **velocity** of a single object at multiple epochs contained within a specified time range."

Attitude Ephemeris Message (AEM) – "An AEM specifies the **attitude state** of a single object at multiple epochs, contained within a specified time range. "

Free Space Loss

Loss varies as per satellite-station distance R over the orbit

Antenna Gain Pattern

Antenna Gain is function of Azimuth and Elevation angles in the Antenna Base Frame

Pointing Loss

Centre Spatial Universitaire de Toulouse Space Innovation, together

Link Budget Equation

General Link Architecture

Link Budget Equation

General Link Architecture

Doppler Effect

Orbit Parameters

Semi-major axis	=	6872.3 (km)
Eccentricity	=	0.00026
Inclination	=	97.4 (deg)
Argument of perigee	=	222.62 (deg)
Longitude of ascending node	=	111.15925 (deg)
Mean anomaly at epoch	=	333.2539 (deg)

Link Parameters

Downlink frequency	=	2210 (MHz)
Minimum station elevation	=	10 (deg)
Data rate after channel coding	=	234000 (b/s)
Transmitter Power	=	3 (dBW)

Free Space Loss and Elevation Angle

VTS Simulation

Latitude = 44.9373254650 ; Longitude = 8.4987769611

Antenna Gain variations

C/NO Variations and Elevation Angle

Centre Spatial Universitaire de Toulouse Space Innovation, together

Eb/NO variations and Elevation Angle

Future Work

UserInputs.m 🔯

- Provide Celestlab code for OEM, AEM generation
- Standardise Antenna Gain measurement
- Develop GUI for user inputs

28	
29	%% General Data for Link Budget Calculations
30	c = 299792458; % speed of light m/s
31	boltz = 1.38064852E-23; %% Boltzman Constant
32	earth_rad = 6378.45e3; % meters
33	<pre>sat_alt = 493e3; %% [km]> satellite altitude</pre>
34	freq_Tx = 2210e6; %% [Hz]
35	data rate = .117E+06; %datarate bit/s
36	code rate = $1/2;$
37	mod_sym = 4; % modulation symbols
38	bandwidth_chan = 350E6; %Channel Bandwidth in Hz
39	min_elev = 5; % Satellite minimum elevation from station [deg]
40	graph_pass_only = true;
41	%% Transmitter Data
42	
43	power_Tx = 3.0; % dBW Satellite TX Power
44	loss cable Tx = -0.5 ; % dB Cable loss
45	loss_feeder_Tx = -3; %dB Coupler loss
46	loss point Tx = 0.0; % dB Transmitter antenna pointing loss
47	antG_Tx = -6; % dBi Transmitter Antenna Gain
48	
49	%% Propagation Losses
50	
51	loss_pol = -1.1; % dB Polarisation Loss
52	loss_atm = -0.5; % dB Atmospheric gas attenuation
53	loss_scin = 0.0; % dB Scintillation loss
54	loss_rain = 0.0; % dB Rain attenuation
55	loss_clouds = 0.0; % dB Clouds attenuation
56	loss_si = 0.0; % dB Snow and Ice attenuation
57	
58	18 Receiver Data

Repository:

https://sourceforge.isae.fr/projects/dosa link budget analysis

- Calculates dynamic link budget
- Enables to identify best passes
- Visualisation of available margins*

*Modenini, Andrea. "Tutorial - Dynamic Link Budget Optimisation for Telemetry Links". This paper provides algorithms for choosing optimal bitrate in a dynamic link budget to maximise amount of data downloaded.

Thank You for your attention

priyanka.ningaraju@gmail.com

Guillaume.ROUX@isae-supaero.fr

Thibault.GATEAU@isae-supaero.fr

[1] Tung, Ramona H., and K. K. Tong. "A multi-mission deep space telecommunications analysis tool: the Telecom Forecaster Predictor." Aerospace Conference Proceedings, 2000 IEEE. Vol. 2. IEEE, 2000.

[2] Software for Analyzing Telecommunication Link Performance – Tech Briefs https://www.techbriefs.com/component/content/article/tb/supplements/pit/briefs/29603

[3] <u>http://help.agi.com/stk/11.1/Content/training/StartCommunications.htm</u>

[4] Lo, V. Y., F. Chen, and J. Rucker. "Spectral Analysis Tool (SAT) for Radio-Frequency Interference Analysis and Spectrum Management." NASA-JPL TMO Progress Report(1998): 42-134.

[5] Software Details https://software.nasa.gov/software/NPO-43129-1

[6] Krikorian, Yogi Y., et al. "A dynamic deep space communication link analysis tool for the deep space network (DSN)." Aerospace Conference, 2005 IEEE. IEEE, 2005.

[7] Cullyer, W.J. "Application of Fourier Techniques to Computer-Aided Design of Electronic Systems." Proceedings of the Institution of Electrical Engineers 118.3-4 (1971): 437. Crossref. Web.

[8] rtl-dst_t400cs.pdf http://www.rtlogic.com/~/media/datasheets/rtl-dst_t400cs.pdf

[9] Castellani, V., M. Pent, and G. Taricco. "Software Package for Computer-Aided Analysis and Design of Communication Systems." Esa Journal 16 (1992): 135.

[10] DET – TOPCOM++ http://www.det.polito.it/research/research_areas/telecommunications/commgroup/topcom

[11] Fashano, Michael, and A. Strodtbeck. "Communication system simulation and analysis with SYSTID." IEEE journal on selected areas in communications 2.1 (1984): 8-29.

[12] Wade, W., et al. "Interactive Communication Systems Simulation Model-ICSSM." IEEE journal on selected areas in communications 2.1 (1984): 102-128.

[13] Modestino, J., and Kurt Matis. "Interactive simulation of digital communication systems." IEEE journal on selected areas in communications 2.1 (1984): 51-76.

[14] Shanmugan, K. Sam, et al. "Block-oriented systems simulator (BOSS)." Military Communications Conference-Communications-Computers: Teamed for the 90's, 1986. MILCOM 1986. IEEE. Vol. 3. IEEE, 1986.

[15] Shanmugan, K. Sam. "An update on software packages for simulation of communication systems (links)." IEEE journal on Selected Areas in Communications 6.1 (1988): 5-12.

[16] Tranter, William H., and Carl R. Ryan. "Simulation of communication systems using personal computers." IEEE journal on selected areas in communications 6.1 (1988): 13-23.

[17] Central Limit Theorem – Wikipedia https://en.wikipedia.org/wiki/Central_limit_theorem

[18] Double Superheterodyne – Radio-Electronics.com https://www.radio-electronics.com/info/rf-technology-design/superheterodyne-radio-receiver/double-superheterodynereceiver.php

[19] AD9361 (Rev F) Datasheet https://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf

[20] M. Bousquet. Satellite Communications Systems, 2017.

[21] Features https://www.scilab.org/about/features

[22] ATOMS: Celestlab details https://atoms.scilab.org/toolboxes/celestlab

[23] CIC Data Exchange Protocol V2.0

[24] Sidiku Mosunmola B., et al. " The Mathematical Model of Doppler Frequency Shift in Leo At Ku, K and Ka Frequency Bands." International Journal of Trend in Research and Development, Volume 4(5), ISSN: 2394-9333.

[25] Young-Joo Song., et al. "Performance Enhancement of a Satellite's Onboard Antenna Tracking Profile using the Ground Station Searching Method". International Journal of Aeronautical & Space Sci. 17(3), 391–400 (2016)

[26] Quaternion Training http://noelhughes.net/uploads/quaternion_training.pdf

[27] Defining the view – 3D visualization http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/visualize/chview3.html

