Open Source Development of Advanced Vacuum Testing Infrastructure for Space Hardware: Micro-TVAC and EXEDA

Applied Ion Systems

Michael Bretti

OVERVIEW

- Advanced high vacuum testing infrastructure for space applications is often extremely costly and highly specialized

 Very large/complex facilities
- Goal: miniaturize/simplify these technologies for use with small, off-the-shelf, modular testing chambers for small satellite applications
 - Employ standard vacuum hardware and simplified in-house built systems
 - How to demonstrate feasibility? Design/build at home with hobby budget with limited materials and open source the designs!

MICRO PROPULSION TEST CHAMBER

- 6" conflat hardware

 Double-sided inputs
 Large viewport
- Optimized design for rapid pumping speeds
 - 600 L/s diffusion pump w/ water cooled baffle
 - 1x10^-5 Torr in < 1 hour
 pumping from atmosphere

MICRO-TVAC

Open Source Micro Thermal Vacuum System for Small Sat Subsystem and Micro Propulsion Development

MICRO-TVAC THERMAL SHROUD CONCEPT DESIGN

LN2, THERMOCOUPLE, AND HEATER POWER FEEDTHROUGH ADAPTER

MICRO-TVAC ASSEMBLY

MICRO-TVAC ASSEMBLY IN CHAMBER

EXEDA

Open Source High Power Pulsed Accelerator

OVERVIEW

- **EX**plosive **E**mission **D**iode Accelerator
- Based on Explosive Electron Emission (EEE) Intense Relativistic Beam (IREB) Direct-Drive Pulsed Diode Accelerator Technology
- Dielectric Fiber Cold Field Emission Plasma Cathode using Velvet Cloth
- Extremely low-cost accelerator
- Highly modular/scalable design (any size conflat standard)

ADVANTAGES

- Very cheap
- Very simple
 - GW-class systems demonstrated by J.C. Martin using hardware store supplies
- Highly versatile
 - e-beam, ion beam, flash x-rays, high power microwaves, intense gas laser pumping, FEL driving, etc.
- Extreme scalability
 - low energy (25keV) low power (several MW) tabletop accelerators to medium energy (several MeV) extreme power (TW class systems)
- Extremely low power requirements
 - Standard outlet power converted to MWs/GWs peak due to pulse compression techniques in pulsed power

EXEDA – PRIMARY BEAMLINE INJECTOR

BEAM PARAMETERS

- Electron Beam Energy: 25 >300keV
- Electron Beam Current: 100s of Amps to >1kA
- Spot Size: up to 55mm
- X-Ray Energy Range: 25 >300keV
- Light/Heavy Ion Energy Range: 25kev 6MeV
- Pulse Width: 20-30ns
- Peak Beam Power: up to 300MW
- Repetition Rate: Single-Shot to <10 Hz
- Anode Mesh Transparency: 82%
- Impedance: Variable

EXEDA WITH MICRO PROPULSION CHAMBER

APPLICATIONS FOR SPACE SYSTEMS

- Low Energy Electron Beams (<100keV)
 - o surface charging effects (solar panels, plastic structure surface charge build-up, surface discharges on circuitry, etc.)
- Medium Energy Electron Beams (100keV >300keV)

 relativistic electron particle bombardment, high kRad
 TID
- Intense Soft and Hard X-Ray Dosing
- Low-Medium Energy Proton Dosing (25kev 300keV)
 SEE and low TID
- Medium-High Energy Proton Dosing (300keV 6MeV)
 SEE and low TID

EXEDA-RADOSE – HIGH TID DIRECT BEAM DOSE

EXEDA-MEVI – HIGH ENERGY ION BEAM DOSE

Thank You for Listening!