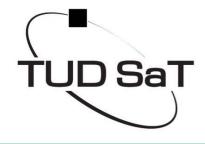
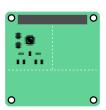
An Open-Source on-board computer platform for CubeSats

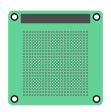
Filip Geib José Feiteirinha December 2020

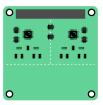


VST104 project - overview and cooperation

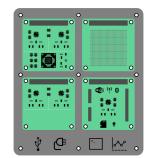
- Development of hardware boards dedicated to CubeSat applications in PC104 format
- Aimed to OnBoard Computer (OBC) boards and development & testing auxiliaries
- Platform for MCS testing and future FPGA onboard algorithms development
- Contribution to the LibreCube initiative and support the local university club - TUDSaT

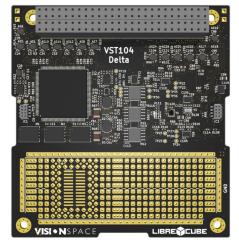

VST104 boards family - summary and overview


Towards the main goal

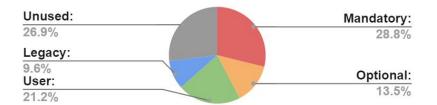

- board_zero universal development board
- board_sierra single MCU OBC board
- board_delta double redundant OBC board


Project auxiliary boards


- element_foxtrot flatsat adapter for above boards
- board_whiskey WiFi radio subsystem equivalent



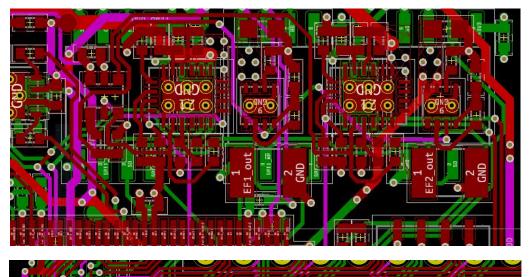
OBC boards specifications

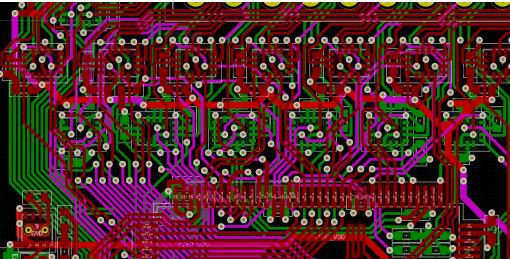

- All used components are suitable for space:
 - Mechanical failure qualifications AEC-Q100 or AEC-Q200
 - Military rated operational temperatures (-40°C to +125°C)
- No radiation hardened components, but:
 - Double redundant OBC switch off & isolate
 - Triple redundancy external memory per OBC
- Compact design with maximal payload sector

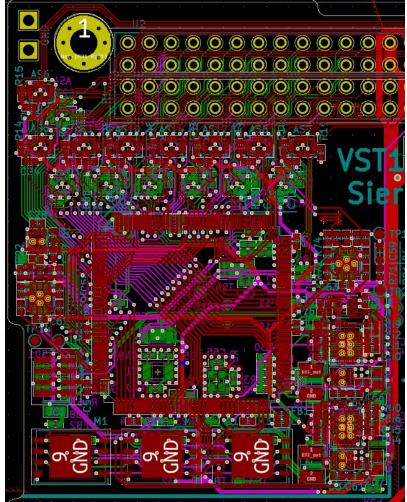
OBC boards peripherals

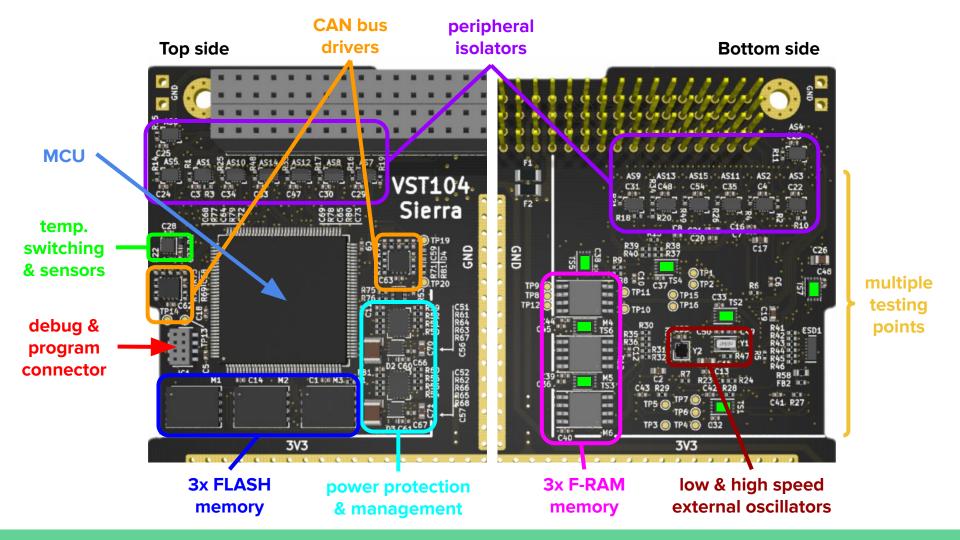
- Main peripherals with robust options:
 - o 2x CAN bus
- 。 2x I2C
- 4x UART
- 2x SPI
- 22 general purpose USER pins
- System check and maintenance signals:
 - WatchDogs
- KillSwitches
- CPU mode
- Synchronisation
- Fault collector

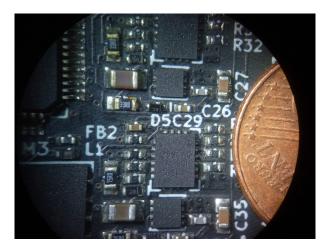
Header H1					
	1	2			
	3	4			
USER_1_1	5	6	USER_1_2		
SPI_1_CS2	7	8	USER_1_4		
SPI_1_CS1	9	10	SPI_1_MOSI		
SPI_1_CLK	11	12	SPI_1_MISO		
UART_1_TX	13	14	UART_1_CTS		
UART_1_RX	15	16	UART_1_RST		
UART_RCS_1_TX	17	18	UART_RCS_1_CTS		
UART_RCS_1_RX	19	20	UART_RCS_1_RST		
I2C_1_SCL	21	22	I2C_1_SDA		
CAN_1_H	23	24	CAN_1_L		
GLO_SYNC	25	26	GLO_FAULT		
CPU_WD_1	27	28	CPU_WD_2		
-	29	30	CPU_MODE		
SUP_3V3_REF	31	32	SUP_5V_REF		
GND	33	34	GND		
GLO_KS_1	35	36	GLO_KS_2		
-	37	38	-		
USER_3_1	39	40	USER_3_2		
USER_3_3	41	42	USER_3_4		
USER_5_1	43	44	USER_5_2		
USER_5_3	45	46	USER_5_4		
	47	48			
	49	50			
	51	52			

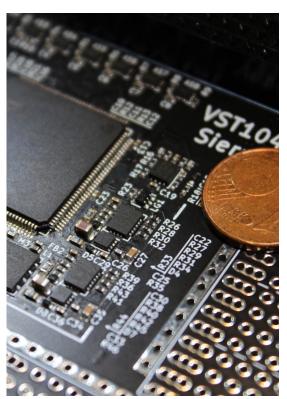

Header H2					
	1	2			
	3	4			
USER_2_1	5	6	USER_2_2		
SPI_2_CS2	7	8	USER_2_4		
SPI_2_CS1	9	10	SPI_2_MOSI		
SPI_2_CLK	11	12	SPI_2_MISO		
UART_2_TX	13	14	UART_2_CTS		
UART_2_RX	15	16	UART_2_RST		
UART_RCS_2_TX	17	18	UART_RCS_2_CTS		
UART_RCS_2_RX	19	20	UART_RCS_2_RST		
I2C_2_SCL	21	22	I2C_2_SDA		
CAN_2_H	23	24	CAN_2_L		
SUP_5V	25	26	SUP_5V		
SUP_3V3	27	28	SUP_3V3		
GND	29	30	GND		
AGND	31	32	GND		
-	33	34	-		
-	35	36	-		
-	37	38	-		
USER_4_1	39	40	USER_4_2		
USER_4_3	41	42	USER_4_4		
USER_6_1	43	44	USER_6_2		
-	45	46	-		
USER_6_3	47	48	USER_6_4		
	49	50			
	51	52			

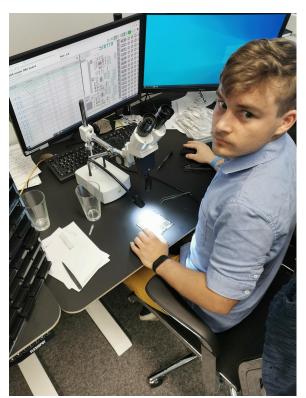

board_sierra - single MCU OBC board


- MCU: STM32L496 up to 78 [MHz]
- Clock: 32.768 [kHz] LSE & 26 [MHz] HSE
- External memory (triple redundant SEE):
 256 [Mbit] Flash & 2 [Mbit] F-RAM
- Peripherals (redundant): CAN bus, I2C, USART, SPI, multiple A/D I/O applications
- Debugging and program: SWI & UART
- Multiple interesting features

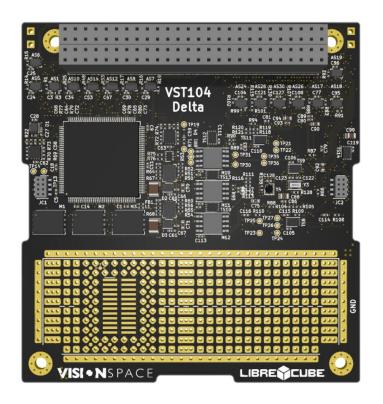




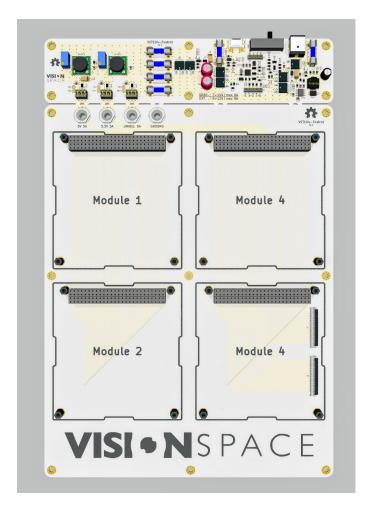


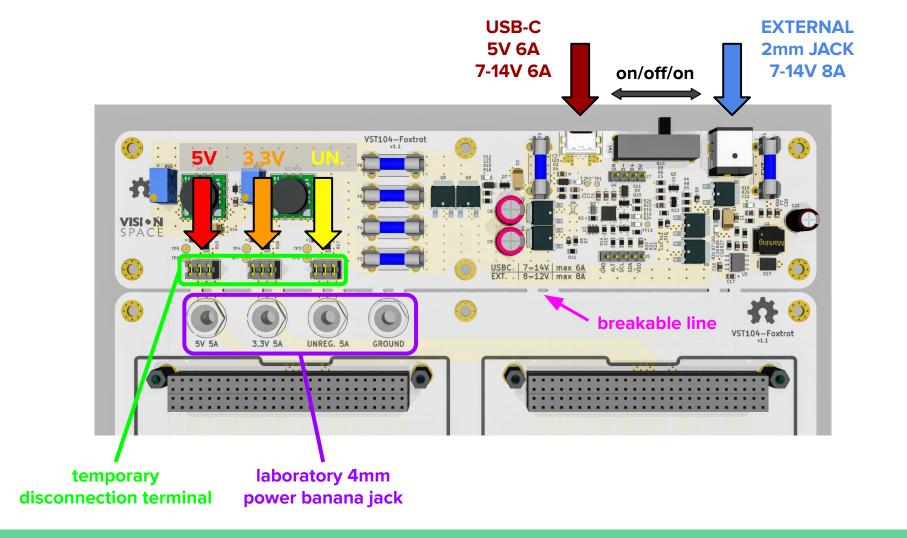

Soldering

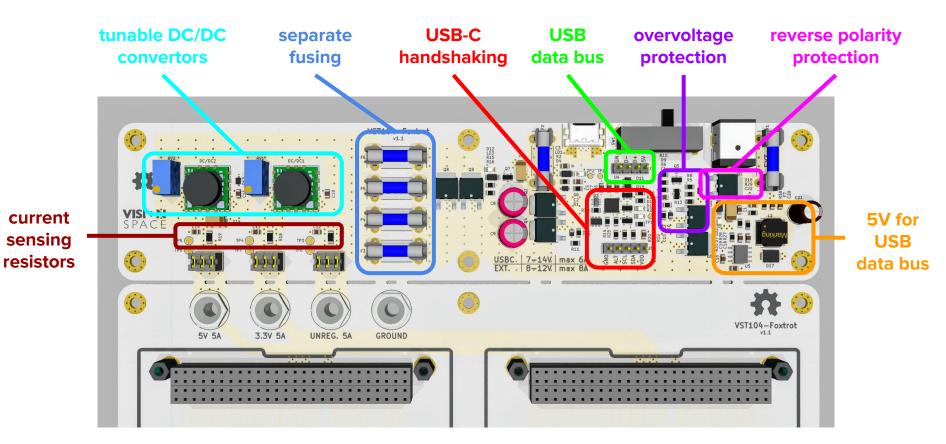
- 1. Isopropyl & Stencil
- 2. Soldering paste
- 3. Tweezers & Microscope
- 4. Hot-air rework station
- 5. Flip sides and repeat
- 6. Clean, check & cry



"No, 0402 is not that small..."


board_delta - double redundant OBC board


- Implementation of board_sierra in full double redundant configuration
- Same layout of both OBCs (almost):
 - No changes in code needed
 - Similar electrical characteristics
- Expecting watchdog and kill-switch logic implementation in PCDU (power board)
- Empty space under "VST104 Delta" marking for future logic integration



element_foxtrot - flatsat

- Spacecraft & subsystems development
- Separate modules testing and debugging
- Future project presentation and show-off
- Replacement of PCDU by power supply with protection & conversion circuitry
- Possibility of extension to another foxtrot

Future work

- Assembly and testing of board_delta
- Addition of external RTC with independent power source
- Redesign of temperature monitoring circuitry for board_delta

Check out our GitHub!

Feel free to contact us:)

José Feiteirinha

jose.feiteirinha@visionspace.com

github.com/visionspacetec/VST104