
An Open Source
Implementation of the ECSS

PUS-C Services in Rust
Author: Selman Özleyen

Co-authors: Jose Feiteirinha, Filip Geib

We will talk about;
● A system programming language called Rust.
● ECSS PUS-C which is a standard.
● An open source ECSS PUS-C implementation in Rust which is called Prust.
● Prust’s use cases in VST104, which was where Prust was deployed first.

INTRODUCTION

● ECSS is a cooperative effort for the purpose of developing and maintaining common
standards.

● Its recent iteration PUS-C was published in 2016 and it's relatively new.
● Prust satisfies some of the service requirements of PUS-C
● PUS is the standard of choice by ESA, and only one spacecraft operated by ESA doesn't

use PUS (OPS-SAT).

PUS-C (ECSS-E-ST-70-41C)

 VST104 board_sierra

This board hosts a single redundant onboard
computer designed to fulfill space industry
requirements. The main processing unit is
STM32L496 microprocessor.

Runs the Prust software. Will be presented tomorrow
by Filip Geib (An Open-Source on-board computer
platform for CubeSats).

● It is a programming language focused on performance and safety, especially safe
concurrency.

● Rust provides memory safety without using garbage collection, but instead through
the use of a borrow checking system.

● "most loved programming language" in the Stack Overflow Developer Survey every
year since 2016.

Rust Language

● C remained the only alternative for a long time because it was faster than other
programming languages.

● Rust offered a cost-free way of ensuring memory safety.
● It also offered usage of High-Level programming features with System-Level

performance.

Why Rust ?

● Is a software implemented with Rust language
● It complies to the PUS-C.
● Tested on VST104 project.
● Aims to be reliable, fast and maintenance cost efficient.

Prusty

● It implements the data structures to send, receive, and interpret PUS space packets
● Has Service 1,3 and 8 data structures in it from PUS-C. (The definitions on next slide)
● Basically a representation of the PUS-C packets in Rust.

PUS-C packets in Prust

Implemented Services

Service Implemented Summary

Function Management
(Service 8)

It has one request (TC) and it executes a function defined by
the user by giving the name of the function

Request Verification
(Service 1)

It has 9 response (TM) types which every one of them
indicates different states for the send subservices (for

example failure,success etc..)

Housekeeping
(Service 3)

It has plenty of TM and TC packets in it. It helps to have
reports of the peripherals connected to the device. It is

implemented partially in Prust

PUS library

Test Case: The Setup

board_zero

board_sierra

Programmer
(to deploy software to
the VST104 board)

Mission
Control

Telecommand (TC)

Telemetry (TM)

Sending a command and getting a response
works like this here.

Example 1:
Function management and request
verification and report (Service 1 and 8)

TC[8,1]

TM[1,7]

STEP 1-
TC[8,1] for example can mean;
Execute function “turn_led” from functions.rs
file with argument: true

Mission
Control
(TC)

Mission
Control
(TM)

STEP 3-
TM[1,7] for example can mean;
Recent TC[8,1] request did finish it’s execution
successfully

Function Table (functions.rs file)
-say_hi_to_aliens()
-turn_led(bool)
-set_led(int,bool)
-sing_happy_bday_to_curiosity(age)

STEP 2-Evaluate Packet;
Find the function from
Function Table and execute it
and generate a TM to report

Example 2:
Housekeeping (Service 3)

TC[3,1]

TM[1,7]

STEP 1-
TC[3,1] for example can mean;
Create a structure of parameters which
includes number 1 and 2 and set this structure
id to 0

Mission
Control
(TC)

Mission
Control
(TM)

STEP 3-
TM[1,7] for example can mean;
Recent TC[3,1] request did finish it’s execution
successfully.

Parameters
1. Temperature (32 bit integer)
2. Potentiometer (16 bit integer)
3. Internal Voltage (32 bit float)

STEP 2-Evaluate Packet;
Create a structure with id 0
and 1 and 2 parameters inside.

Structures
(empty)

TC[3,5]

TM[3,25]

STEP 4-
TC[3,5] for example can mean;
Enable periodic collection of Structure Id 0
and report it periodically.

Mission
Control
(TC)

Mission
Control
(TM)

STEP 6- (This is send PERIODICALLY)
TM[3,25] for example can mean;
A packet containing parameter values of
Structure Id 0.

Parameters
1. Temperature (32 bit integer)
2. Potentiometer (16 bit integer)
3. Internal Voltage (32 bit float)

STEP 5-Evaluate Packet;
Enable timer and periodically
report parameters of Structure
Id 0.

CONT..

Structures
0. Includes parameter 1 and 2

Extend the Prust source code with the following functionality;
● Add check by APID
● Read flash and F-Ram device types and UUID - to be provided via service 8 request
● Read temperature from on-board sensors - to be provided via service 3
● Set clock speed
● Add new test cases for each new feature
● Look into Rust based RTOS for Embedded development.
● Propose and implement the migration of existing code onto a RTOS kernel

Next Steps

If you are interested in contributing
you can contact this email address: jose.feiteirinha@visionspace.com

Here is the public repository: https://github.com/visionspacetec/Prust

mailto:jose.feiteirinha@visionspace.com
https://github.com/visionspacetec/Prust

QUESTIONS?

I’d like to hear your questions and thoughts.
It might be about Rust or the VST104 board maybe? Or anything
really...

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik

THANKS!

github:SelmanOzleyen
email:syozleyen@gmail.com

linkedin:selman_oz

Also thanks to Jose Feiteirinha, Fatih Erten, Filip Geib and VisionSpace for their support.

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:syozleyen@gmail.com

