AEGIS SAT-01

TASKMASTERS

Ana Marques | Tomás Pinto | Muhammad Khabeer | Nuno Cordeiro | Margarida Matos | Paulo Nascimento | Magali Leodato

PROJECT OVERVIEW

Overview and objectives of the areas composing our team.

AFFILIATES

Instituto Superior de Engenharia de Lisboa | Agência Espacial Portuguesa | Stars Edge | Spacengineer

Braulio Silva, Guilherme Costa, Ana Rita Marques, Diogo Oliveira, Manfred Niehus, Rui Duarte

Promote and support the principles of the European Space Agency's Zero Debris Charter.

Survive debris impacts using a protective shield.

Integrate innovative electric propulsion for orbit correction and controlled self-disintegration on reentry

Collect and transmit system and Atlantic buoys' data.

Test space qualified RISC-V processors.

YYEGIS SAT-01

ONBOARD COMPUTER

- Custom PCB to manage all subsytems;
- Data Retrieval, processing, and command execution;

Solar Panel

Ensures autonomous operation.

ENERGY

- In-house power system with COTS components;
- Capture, regulation, storage, and distribution.

GROUND STATION

- Provides uplink/downlink for command and telemetry between the cubesat and the ground station;
- Stores and distributes mission data.

EMBEDDED SYSTEMS

- Develop and validate Cubesat firmware;
- Firmware runs on the OBC;
- Controls sensors, actuators and subsystem interactions.

Propulsion system COMM CDHS -Collision detection foil EPS -Battery Magnet **Temperature Sensor**

Frame

SENSORS AND ACTUATORS

- Monitor impacts, temperature, pressure and oxidation;
- Validate debris shield performance;
- Interface with propulsion for system response.

TELECOMMUNICATIONS

- Telemetry, command, payload data and system updates;
- Half-duplex;
- VHF uplink (ground \rightarrow Cubesat);
- UHF downlink (Cubesat → ground);
- Data uplink from buoys in the Atlantic ocean.

STRUCTURE

Shield —

Strain gauge —

LED & Photodiode

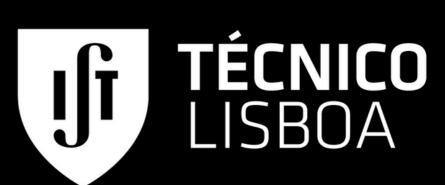
- Supports mechanical loads during launch and operation;
- Ensures structural integrity during deployment;

Secondary Antenna

 Integrates shielding components (space debris and radiation).

THERMODYNAMICS

- Thermal modeling via FEM (finite element method);
- Passive temperature control (no active systems);
- Ensure safe operation in all orbital conditions.



VHF & UHF antenna

