

Space Based Precipitation Measurement with a CubeSAT

Varun D

Assistant Professor and Affiliate Scientist

Department of Electronics and Communication Engg., RUAS

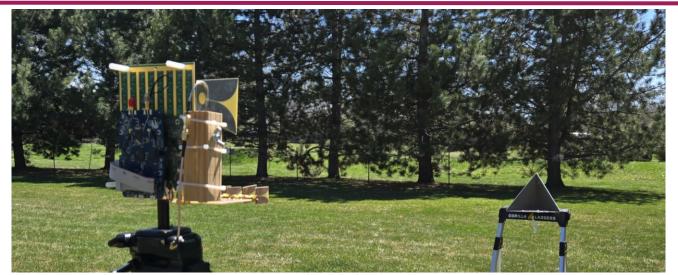
CSPCSR and CASA Labs

WWW.MSRUAS.AC.IN

Precipitation Measurement Satellite

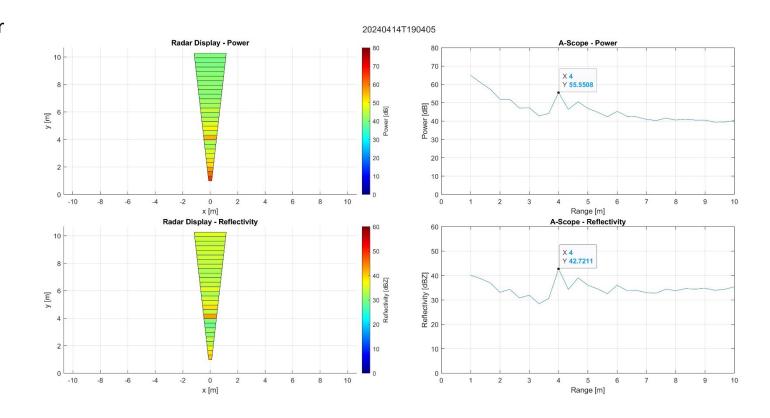
- The Cloud Profiling Radar on satellite is developed under cooperation of National Institute of Information and Communications Technology (NICT) and Japanese Aerospace Exploration Agency (JAXA) in Japan
- First spaceborne Doppler radar for cloud and precipitation

Precipiation Measurement Satellite



- CPR has two objectives, which are to measure profile of clouds reflectivity and to measure up/down velocity of clouds
- Then the requirement of sensitivity is -35dBZ after 20km integration and the requirement of Doppler velocity measurement accuracy is less than 1 m/s after 10km integration for more than -22 dBZ of clouds
- The large antenna has large footprint and uses phased arrays

Calibration Mechanism of Payload



Calibration Mechanism

- 12-inch diameter sphere located 4 m from the radar
- Radar Cross Section: $\sigma = \pi r^2 = 0.073 \ m^2$
- Received Power (at antenna): $P_r = \frac{P_t G^2 \lambda^2}{(4\pi)^3 r^4} \sigma$
- Receiver Power: $P_o = G_{rx}P_r$
- Radar Constant: $C = \frac{G_{rx}P_tG^2\pi^3|k_w|^2\Delta r\sin\frac{\theta}{2}\sin\frac{\varphi}{2}}{128\times10^{18}\lambda^2\ln 2}$
- Equivalent Reflectivity: $Z_e = \frac{P_o r^2}{C}$
- $dBZ = 10 \log_{10} Z_e = 41.6 \text{ dBZ}$
- Measured Reflectivity: 42.7 dBZ

Radar Equation

$$P_{r} = \frac{P_{t}G^{2}\lambda^{2}\theta^{2}c\tau}{2^{10}\pi^{2}(\ln 2)R^{2}} \frac{1}{L} \frac{\pi^{5}|K|^{2}}{\lambda^{4}} 10^{-18} \cdot Z \cdot 10^{-0.2 \int_{0}^{r} kdr}$$

Radar Equation

Pt: Transmitting Power at Antenna Feed [mW]

Pr: Received Power at Antenna Feed [mW]

λ: Wave Length [m]

G: Antenna Gain [dBi]

θ: Half Power Antenna Beam Width [(radian)]

c: Velocity of Light [m/s]

τ: Pulse Width [s]

R: Range form CPR to surface [m]

K: Dielectric Constant = (m2-1)/(m2+1) [unit]

m: diffractive index of target

k: Attenuation Coefficient (cloud and atmosphere) [dB/km]

Z: Radar Reflectivity Factor [mm6/m3]

L: Calibration Factor or System Loss [unit]

OBJECTIVES of external calibration

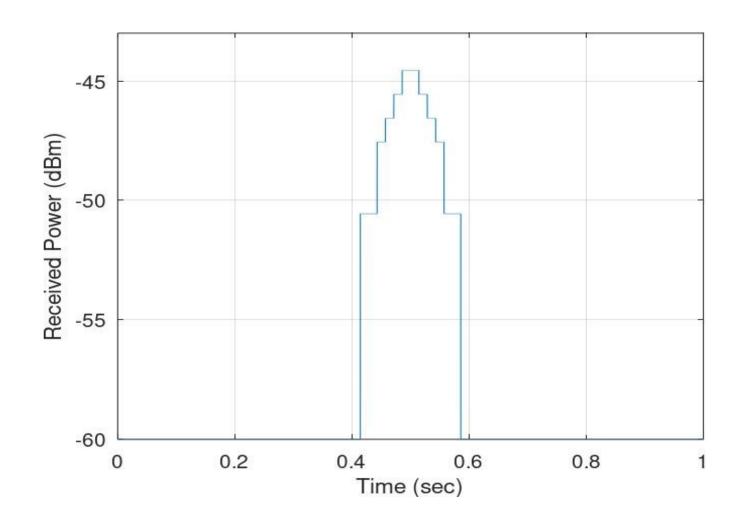
- ✓ Define calibration factor of radar in Radar Equation
- ✓ Define transmitting power
- ✓ Define receiving power
- ✓ Define antenna pattern (Beam Pointing)

PROBLEM

Too narrow foot print

Possible External Calibration Methods

- using ARC (Active Radar Calibrator) (need feasibility study)
- using natural distributed target (sea surface, etc)



- Key issues for external calibration using ARC
- (1) Prediction of Satellite Track and Overpass Time
- (2) Place ARC to exact location predicted
- (3) Reconstruction of Transmitting Pulse Shape
- (4) Reconstruction Antenna Pattern

Calibration Error

Conclusion

- The performance of external calibration using ARC is shown by the feasibility experiment.
- The amplitude measurement results including the reception of crosspolarized signal by accident are agreed within sufficient error.
- From the phase measurement result, the antenna pointing is estimated not within the range of error.
- Known key issues of external calibration for CPR are followings;
 - (1) Prediction of Satellite Track and Overpass Time
 - (2) Place ARC to predicted position
 - (3) Examination at exact timing
 - (4) Reconstruction Antenna Pattern
 - (5) Reconstruction of Transmitting Pulse Shape

Thank You