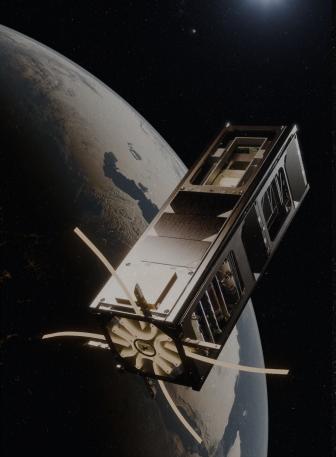
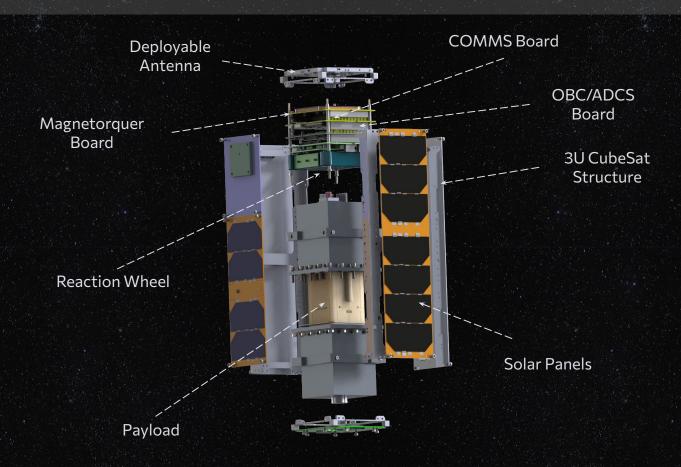


AcubeSAT, the 3U platform for biological experiments in space: a status update Sunday, 26 Oct 2025

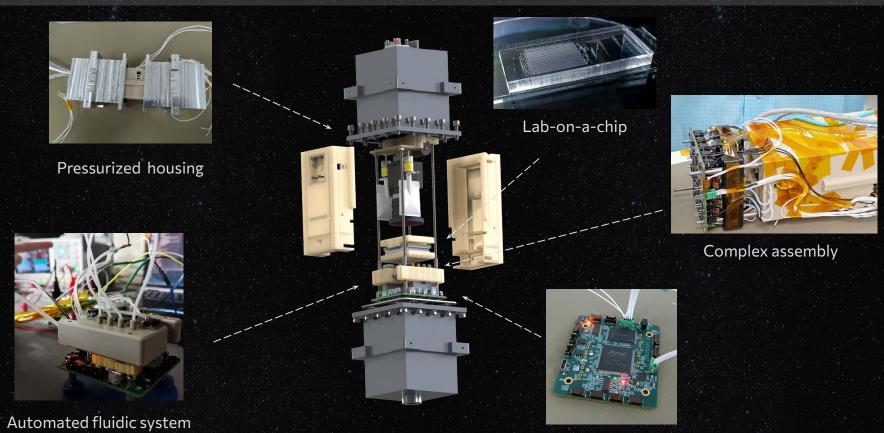


AcubeSAT - an autonomous lab for high-throughput space biology

Mission Goals

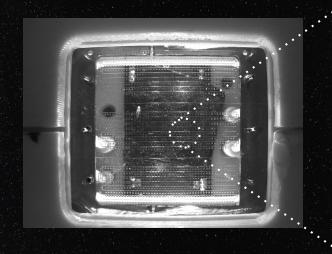

Probe the regulation of gene expression of eukaryotic cells in microgravity and radiation environment in **100x higher scale** than previously reported

Develop and demonstrate a novel **modular platform for scalable space biology** research



AcubeSAT: a closer look

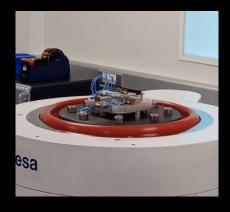
AcubeSAT's powerful scientific platform


Autonomous electronics system

Interrogating biology in high-throughput on a satellite platform

Payload (2U)

Functional testing

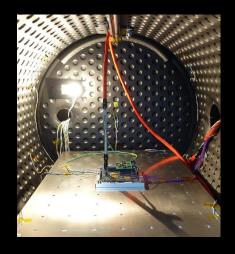


In-house Subsystems Successful Vibrations Testing

Post testing functionality verified

COMMS Board VIBE Testing

Post testing functionality verified

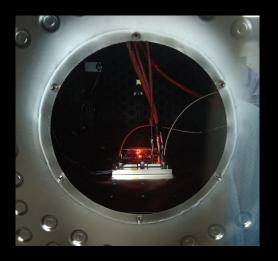


✓ Payload VIBE Testing

Container leak rate not modified

Post testing experiment functionality verified (fluidic, microfluidic, imaging and electrical interfaces)

In-house Subsystems Successful TVAC Testing

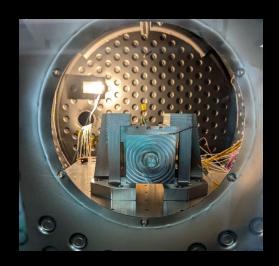


OBC/ADCS Board TVAC Testing

Telemetry transmission & Telecommand reception

Data storage & recovery

Mission-specific commands execution



COMMS Board TVAC Testing

Telemetry transmission

Payload Data transmission

Telecomand reception

V Payload TVAC Testing

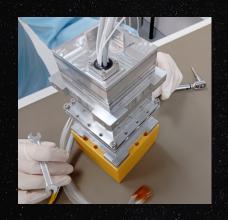
Thermal control verified

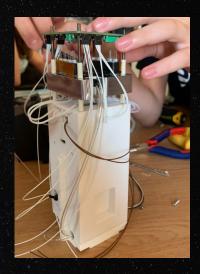
Successful experiment sequence verified

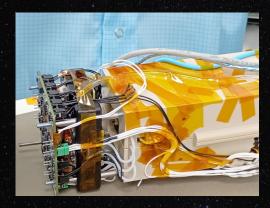
Achievements & Timeline

OSCW '19

OSCW '20

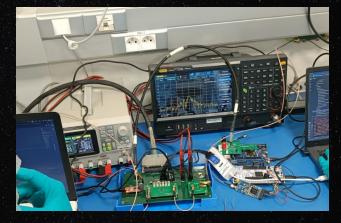






Some AIV recommendations for building CubeSats/complex payloads

Test assembly procedures with dummy hardware beforehand



Kapton tape is your best friend 😌

Some AIV recommendations for building CubeSats/complex payloads (2)

Do

Don't

Cables can be pain.

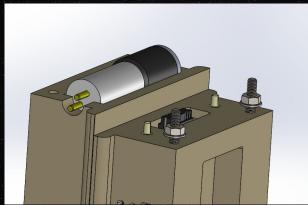
- 1. Follow standard conventions.
- 2. Triple check your specification.
- 3. Check cable lengths.
- 4. Do your pin-to-pin checks once you receive/assemble your cables.

Some AIV recommendations for building CubeSats/complex payloads (3)

Two-person rule

Doing anything with AcubeSAT FM requires:

- 1. One operator
- 2. One PA and other roles as needed.


Everyone should have a basic understanding of what the hardware is and how it behaves.

Activity to be stopped in case of uncertainty/disagreement.

Minimize risk of damage to hardware 😌

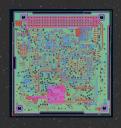
Some AIV recommendations for building CubeSats/complex payloads (4)

CAD is different than real-life

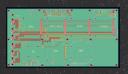
A small sticker on the pump meant that it could not fit inside its designated spot. Stickers have 3 dimensions and material properties as well!

Small deviations from the CAD and tolerances can throw off the entire integration process.

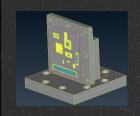
Random cool open-source stuff you might want to check out - Hardware



gitlab.com/acubesat


Payload platform

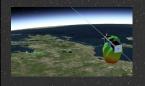
Detailed design for the entire qualified 2U payload platform to host your own biology-related experiments


OBC/ADCS board

A qualified double-sided PCB featuring AcubeSAT's On-Board Computer and the ADCS processing unit

Flatsat

AcubeSAT's Flatsat board for functional testing and SW development

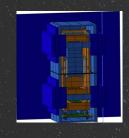

Test adaptors

A variety of tested adaptors including ones for PC/104 compliant boards for vibration & thermal testing

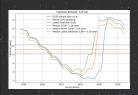
Random cool open-source stuff you might want to check out - Analysis



gitlab.com/acubesat


Link Budget

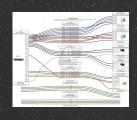
A verification of AcubeSAT's 2021 link budget using antenna models made in HFSS and STK scenarios


Radiation analysis

Analysis performed using OMERE and FASTRAD for SSO orbits + description how to do it

Thermal analysis

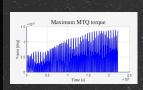
Thermal analysis performed at system level and for the payload qualification campaign in ESATAN-TMS


SDMR Compliance

Python scripts automating space debris mitigation requirements verification with DRAMA (probabilistic orbital lifetime + collision assessments)

Random cool open-source stuff you might want to check out - SW & Misc

gitlab.com/acubesat


Harness

Detailed GSE and harness description for AcubeSAT in WireViz (TVAC compatible)

Documentation

Data package from AcubeSAT's CDR and test specifications & reports from subsystem qualification campaigns

ADCS SW & Simulation

Full simulation of AcubeSAT ADCS control algorithms (including Thomson sun-pointing) and their software implementation

Implementation of: ECSS-E-ST-70-41C Services

A C++ implementation of the ECSS Packet Utilization Standard

Thank you!

Read more:

gitlab.com/acubesat acubesat.spacedot.gr

Contact us:

acubesat.sye@spacedot.gr

info@spacedot.gr